# Retinoids and Related Compounds. Part 15. ${ }^{1}$ Synthesis and Spectral Characterization of Bicyclic Retinals involving the 8-18 or 8-16 Bonded Structure 

Yuko Katsuta, Miho Sakai and Masayoshi Ito*<br>Kobe Women's College of Pharmacy, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658, Japan

In order to investigate both the chromophore conformation around the trimethylcyclohexene ring and the origin of the induced $\beta$-circular dichroism (CD) band in rhodopsin, two $C(6)-C$ (7) singlebond fixed retinal analogues, 6 s -cis- and 6 s -trans-locked bicyclic retinals 5 and 6 , have been synthesized. Their spectral characterization is described.

The visual pigment rhodopsin (Rh) 1 found in vertebrate retina contains the protonated Schiff base of $11 Z$-retinal 2 as a photoactive chromophore which is bound to the terminal $\varepsilon$ amino group of lysine- 296 of the apoprotein opsin. ${ }^{2,3}$ Both $11 Z$ retinal and opsin fail to show optical activity in the visible and near-UV part of the spectrum, but Rh 1 has a characteristic circular dichroism (CD) signal at the $\alpha$ - and $\beta$-bands. It is of particular interest for the conformational analysis of the chromophore of Rh to elucidate the origin of the CD bands of $R h$, since the CD spectrum gives precise information about the interaction between the chromophore and the protein in photobleaching intermediates of $\mathrm{Rh}^{4-6}$ In previous papers, ${ }^{7-9}$ we proposed that the origin of the $\alpha-\mathrm{CD}$ band of Rh is due to the twisted 12 s -bond in the chromophore by use of the 5 -membered Rh analogue 3 , having a non-twisted conformation around a 12 s -trans bond. The CD spectra of 3 showed a negligible $\alpha$-band [ $\beta$-band: $336 \mathrm{~nm}(+11.6)$ ] in comparison with that of Rh $[\alpha$-band: $487 \mathrm{~nm}(+7.5), \beta$-band: $335 \mathrm{~nm}(+15.4)]$. This is strong evidence supporting the theory of a twisted chromophore proposed for the induction of the $\alpha$-CD band in Rh. On the other hand, CD data of the bicyclic Rh analogue 4 [ $\alpha$-band: 512 $\mathrm{nm}(+13.6), \beta$-band: $326 \mathrm{~nm}(-2.1)$ ], having 6 s -cis fixed chromophore suggested that the $\beta$-band of Rh originates from the twist of the 6-7 single bond. The $9 Z$-chromophore of 4 , however, left ambiguity as to the conformation around the 6-7 bond in the $11 Z$ form. In order to investigate the origin of the $\beta-\mathrm{CD}$ band of Rh , two kinds of retinal analogues, $11 Z-6 \mathrm{~s}$-cisfixed bicyclic retinal 5 and $11 Z$ - 6 s -trans-fixed bicyclic retinal 6, were prepared and incorporated into bovin opsin to provide the artificial Rh analogues 7 and 8, respectively. Details of the CD data of the analogues 7 and $\mathbf{8}$ and the conformational study of the chromophore were discussed in the previous paper. ${ }^{10}$ Here we report a full account of the synthesis of the bicyclic retinals 5 and 6.

## Results and Discussion

$6 s$-cis-Locked Bicyclic Retinal 5 (Scheme 1).-Aldol condensation ${ }^{11}$ of 2,3,4,5,6,7-hexahydro-7,7-dimethyl- $1 H$-inden-1-one $9^{12}$ with 3-oxobutanal dimethyl acetal in the presence of lithium diisopropylamide (LDA) gave the hydroxy acetal 10 ( $85 \%$ ) as a mixture of diastereoisomers which, without separation, was deprotected with $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to afford the hydroxy aldehyde 11 ( $83 \%$ yield). A Horner-Emmons reaction of 11 with the C-5 ester phosphonate gave the diene ester 12 ( $68 \%$ yield) as a mixture of 4 isomers ( $13 E$ - and $13 Z$-isomers for each of the two diastereoisomers) which, without separation, after reduction of the ketone group with $\mathrm{LiBH}_{4}$ was dehydrated with $\mathrm{I}_{2}$ to provide the conjugated pentaene ester 13 ( $20 \%$ from 12). Conversion of the ester group in compound 13 into the aldehyde group led to a

mixture of conjugated pentaene aldehydes 5 and $14(52 \%)$, the repeated purification of which by a combination of column chromatography ( CC ) and preparative high performance liquid chromatography (HPLC) in the dark furnished 4 bicyclic retinal isomers $(\mathbf{5 a}: \mathbf{5 b}: \mathbf{1 4 a}: \mathbf{1 4 b}=1.7: 1.4: 1.2: 1.0)$. The structures of the isomers were determined on the basis of the UVvisible (VIS) and ${ }^{1} \mathrm{H}$ NMR spectral data compared with those of all-E-retinal and another all-E-bicyclic retinal 15 (Table 1). ${ }^{13}$ Confirmation of their stereostructure was based on measurements of nuclear Overhauser effects (NOE). A positive NOE ( $25 \%$ ) between C-1-gem-Me and $7-\mathrm{H}$ in 5 a was observed in combination with the absence of that observed between C-1-gem-Me and $18-\mathrm{H}_{2}$, indicating this structure (Scheme 1). On the other hand, a $7 \%$ NOE between C-4-gem-Me and $18-\mathrm{H}_{2}$ was observed in 14a. 11Z-6s-cis-Locked bicyclic retinal 5c was obtained from the photoirradiation mixture of the all- $E$ form. Irradiation products of 5a using a daylight fluorescent lamp (30 W) in MeOH exhibited the HPLC chromatogram shown in Fig. 1. Although the main product was the $9 Z$-isomer 5 d , the $11 Z$ isomer 5 c was also isolated very carefully by preparative HPLC in the dark. These structures were determined from ${ }^{1} \mathrm{H}$ NMR; the $9 Z$-geometry was identified from the upfield shift of the


Scheme 1 Reagents and conditions: i, LDA, $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OMe})_{2}, \mathrm{THF},-60$ to $-40{ }^{\circ} \mathrm{C}, 85 \% ;$ ii, $15 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, $0{ }^{\circ} \mathrm{C}, 83 \%$; iii, $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCO}_{2} \mathrm{Me}$, BuLi, THF, $0^{\circ} \mathrm{C}, 68 \%$ or $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCO}_{2} \mathrm{Me}$, reflux, $96 \%$; iv, LiBH 4 , THF; v, $\mathrm{I}_{2}$, light petroleum, reflux, $20 \%$; vi, $\mathrm{LAH}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; vii, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 52 \%$; viii, preparative HPLC




Fig. 2

Tables 2 and 3, 13- and 9-methyl signals and 11- and 12-olefinic proton signals are strongly shielded by the solvent effect. This trend is also observed in the 6 s -cis-fixed bicyclic retinals 5 . In addition, the chemical shift differences between the $11 Z$-isomer 5 c and the all-E-isomer 5 a are close to those of $11 Z$-retinal relative to all- $E$-retinal. The ${ }^{1} \mathrm{H}$ NMR of other isomers of 5 measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ were also assigned by comparison with the chemical shifts and their differences among retinal isomers in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Table 2), which are useful data in the assignment of unstable retinal analogues. Isomer $5 \mathbf{c}$ showed an absorption maximum at $422 \mathrm{~nm}(\mathrm{EtOH})$. This is the longest wavelength observed so far for $11 Z$-retinal analogues, suggesting that the chromophore in $\mathbf{5 c}$ has a high coplanarity in a $\mathrm{C}(5)-\mathrm{C}(8)$ part (Table 4).

6s-trans-Locked Bicyclic Retinal 6 (Scheme 2).-Treatment of 2,6 -dimethylcyclohexanone with the lithium derivative prepared from butyllithium (BuLi) and the prop-2-ynyl alcohol THP ether gave the alcohol 16 in quantitative yield. After deprotection, the resulting diol 17 was cyclized under acidic conditions ${ }^{12}$ to provide the bicyclic enone $18(44 \%)$ as an enantiomeric mixture. The structure of this new compound 18 was determined from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (see Experimental section). This reaction mechanism was rationalized by MacAlpine et al. ${ }^{12}$ Attempts to obtain compound 6 by use of the same route as the preparation of 5 and 14 (Scheme 1) were unsuccessful at the dehydration stage. The methoxycarbonyl group was introduced at the $\alpha$-position in the ketone 18 with dimethyl carbonate in the presence of NaH to afford the keto ester $19(92 \%)$. Subsequent reduction of 19 with $\mathrm{NaBH}_{4}$ followed by protection of the resulting hydroxy group with tertbutyldimethylsilyl (TBS) group provided 20 ( $55 \%$ from 19)

Table $2{ }^{1} \mathrm{H}$ NMR chemical shifts of 6 s -cis-fixed bicyclic retinals 5 and retinals. The chemical shift differences of each isomer relative to all- $E$-isomers are given in parentheses

|  |  | All-E-5a | 13Z-5b | 11Z-5c | 9Z-5d |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR <br> ( 200 MHz ) $\left(\delta, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ | $9-\mathrm{Me}$ | 1.89 | 1.89 (0) | $1.85(-0.04)$ | $1.91(+0.02)$ |
|  | 13-Me | 1.79 | 1.65 (-0.14) | $1.85(+0.06)$ | $1.78(-0.01)$ |
|  | 7-H | 6.62 | 6.62 (0) | $6.60(-0.02)$ | 6.63 (-0.01) |
|  | 10-H | 6.23 | $6.30(+0.07)$ | $6.77(+0.54)$ | $5.90(-0.33)$ |
|  | 11-H | 6.91 | $6.84(-0.07)$ | 6.47 (-0.44) | $7.21(+0.30)$ |
|  | 12-H | 6.12 | $7.27(+1.15)$ | $5.61(-0.51)$ | $6.08(-0.04)$ |
|  | 14-H | 6.05 | $5.76(-0.29)$ | $6.22(+0.17)$ | $5.97(-0.08)$ |
|  | CHO | 10.07 | $10.21(+0.14)$ | $10.02(-0.05)$ | $10.03(-0.04)$ |
|  |  | All-E-retinal | 13Z-retinal | 11Z-retinal | 9Z-retinal |
| ${ }^{1} \mathrm{H}$ NMR <br> ( 500 MHz ) $\left(\delta, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ | 9-Me | 1.78 | 1.78 (0) | $1.74(-0.04)$ | $1.86(+0.08)$ |
|  | 13-Me | 1.74 | $1.59(-0.15)$ | $1.76(+0.02)$ | $1.62(-0.12)$ |
|  | 7-H | 6.36 | $6.37(+0.01)$ | $6.34(-0.02)$ | $6.37(+0.01)$ |
|  | 10-H | 6.02 | $6.05(+0.03)$ | $6.59(+0.57)$ | $5.89(-0.13)$ |
|  | 11-H | 6.84 | $6.74(-0.10)$ | $6.38(-0.46)$ | $7.07(+0.23)$ |
|  | 12-H | 6.04 | $7.07(+1.03)$ | $5.59(-0.45)$ | $5.97(-0.07)$ |
|  | 14-H | 5.96 | $5.75(-0.21)$ | $6.11(+0.15)$ | $5.94(-0.02)$ |
|  | CHO | 10.02 | $10.15(+0.13)$ | $9.91(-0.11)$ | $9.95(-0.07)$ |

Table $3{ }^{1} \mathrm{H}$ NMR data for all- $E$ - and 11Z-6s-trans-fixed bicyclic retinals and all- $E$ - and $11 Z$-retinals

|  |  | All-E-6a | All-E-retinal | 112-6c | 11Z-retinal |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{1} \mathrm{H}-\mathrm{NMR}$ | $1-\mathrm{Me}$ | 1.05 (s) | 1.04 (s) | 1.05 (s) | 1.02 (s) |
| ( 200 MHz ) | $5-\mathrm{Me}$ | 1.74 (s) | 1.72 (s) | 1.74 (s) | 1.71 (s) |
| $\left(\delta, \mathrm{CDCl}_{3}\right)$ | $9-\mathrm{Me}$ | 2.10 (s) | 2.03 (s) | 2.06 (s) | 1.99 (s) |
|  | 13-Me | 2.33 (s) | 2.33 (s) | 2.39 (s) | 2.36 (s) |
|  | $7-\mathrm{H}$ | 6.56 (s) | 6.36 (d, J 16.5) | 6.55 (s) | 6.32 (d, J 16) |
|  | 10-H | 6.26 (d, J 12) | 6.20 (d, J 12) | 6.61 (d, J 10) | 6.54 (d, J 13) |
|  | 11-H | 7.15 (dd, $J 15,12$ ) | 7.15 (dd, J 15.4, 12) | 6.70 (t-like, $J$ 10) | 6.69 (dd, $J 13,11.5)$ |
|  | 12-H | 6.40 (d, $J$ 15) | 6.37 (d, J 15.4) | 5.95 (d, J 10) | 5.92 (d, J 11.5) |
|  | 14-H | 5.98 (d, J 8.5) | 5.98 (d, J8) | 6.08 (d, $J 8)$ | 6.07 (d, J8) |
|  | CHO | 10.12 (d, J8.5) | 10.12 (d, J 8) | 10.10 (d, J 8) | 10.10 (d, J 8) |

Table 4 UV-VIS absorption maxima for retinal analogues, their PSB and rhodopsin analogues

${ }^{a}$ In MeOH. ${ }^{b}$ In CHAPS-PC mixture.
which, on reduction with lithium aluminium hydride (LAH) and subsequent Swern oxidation, was converted into the aldehyde $21(77 \%)$. Addition of the methyl group to the aldehyde 21 using a Grignard reagent followed by Swern oxidation gave the ketone $22(85 \%)$ which was transformed into the dienone 23, possessing a $\beta$-ionone-type chromophore by deprotection with tetrabutylammonium fluoride (TBAF). Its absorption maximum is at a longer wavelength ( 312 nm in $\mathrm{EtOH})$ than that of $\beta$-ionone, suggesting the coplanarity of chromophoric system in the dienone 23. The transformation of 23 into the bicyclic retinal 6 was achieved by application of the usual procedure of retinal synthesis. Two-carbon unit elongation of the dienone 23 by the Horner-Emmons reaction
gave only the $9 E$-triene ester $24(63 \%)$. The stereostructure of the ester 24 was determined by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with those of $9 E$ - and $9 Z$-ethyl $\beta$-ionylideneacetate 25 (Fig. 3). LAH reduction of the ester 24 and subsequent treatment of the resulting triene alcohol with triphenylphosphine hydrobromide $\left(\mathrm{Ph}_{3} \mathrm{P} \cdot \mathrm{HBr}\right)$ gave the corresponding Wittig salt which, without purification, was condensed with methyl ( $E$ )-4-formyl-3-methylbut-2-enoate in the presence of NaOMe as a base to provide the pentaene ester 26 as a mixture of geometrical isomers ( $42 \%$ from 24). The ester 26 was converted into an isomeric mixture of $6 s$-trans-locked bicyclic retinal $6(38 \%)$ by LAH reduction and $\mathrm{MnO}_{2}$ oxidation. Separation and purification of the mixture by preparative


19




Scheme 2 Reagents and conditions: i, $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{OTHP}, \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}$, quant.; ii, $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, quant.; iii, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}, 44 \%$; iv, NaH , $(\mathrm{MeO})_{2} \mathrm{CO}$, benzene, reflux, $92 \%$; v, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; vi, $\mathrm{TBSCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 55 \%$, vii, $\mathrm{LAH}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; viii, Swern oxid., $2177 \%$ from $\mathbf{2 0 , 2 2 8 5 \%}$ from 21; ix, MeMgBr, THF, $0^{\circ} \mathrm{C}$; x, TBAF, THF, $83 \%$; xi, ( EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{BuLi}, \mathrm{THF}$, reflux, $63 \%$; xii, $\mathrm{Ph}{ }_{3} \mathrm{P} \cdot \mathrm{HBr}, \mathrm{MeOH}$; xiii, $\mathrm{OHCC}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCO}_{2} \mathrm{Me}$, $\mathrm{NaOMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 42 \%$ from 24 ; xiv, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 38 \%$ from 26; xv, preparative HPLC


Fig. 3

HPLC in the dark led to three pure isomers [all- $E: 11 Z: 13 Z=$ $20: 5: 7]$. Their structures were confirmed on the basis of the UV-VIS (Table 4) and ${ }^{1} \mathrm{H}$ NMR data (Table 3) by comparison with those of respective retinal isomers. ${ }^{14}$ Both 6 s -cis- and 6 s -trans-locked retinals have longer absorption maxima than those of native retinal (Table 4). This suggests that compounds 5 and 6 have greater chromophoric coplanarity due to the rigidly fixed structures. Absorption data of rhodopsin analogues 7 and $\mathbf{8}$ are listed in Table 4. Compound 8 showed an absorption maximum at 545 nm which is located at a wavelength longer than that (539 nm ) of compound 7. The absorption maxima of the aldehyde 6 and its protonated Schiff base (PSB), however, showed shorter wavelengths than those of the aldehyde 5 and its corresponding PSB. These results suggest that in the organic solvent, compound 5 and its PSB containing the cyclopentadiene chromophore have higher coplanarity in the whole conjugated structure than compound 6 and upon reaction with the protein, compound 5 is incorporated in the more strongly twisted conformation [presumably at the $C(8)-C(9)$ single bond ${ }^{10}$ ] than that of compound 6.

## Experimental

M.p.s are uncorrected. BuLi was used as a solution in hexane. UV-VIS spectra were recorded on a Shimadzu UV 200 or UV 200S or UV-160 instrument ( $\varepsilon$ values are given in $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ $\mathrm{cm}^{-1}$ ) and IR or FT-IR spectra on a Shimadzu IR-27G or Shimadzu FT-IR-4200 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra at 200 MHz or 500 MHz were measured on a Varian XL-200 or a Varian VXR-500 superconducting FT-NMR spectrometer using tetramethylsilane as an internal reference. Mass spectra were determined on a Hitachi M-80 double focusing GC mass spectrometer. CC was performed on silica gel Merck Art. 7739 using a short column with glass filter under reduced pressure. Preparative TLC was performed on silica gel plates (Merck silica gel $60 \mathrm{~F}_{254}$ precoated plates, 0.25 or 0.5 mm thickness). Analytical HPLC was carried out on a Shimadzu LC-5A instrument with a Shimadzu photodiode array UV-VIS detector SPD-M6A using a column, LiChrosorb Si-60 ( $5 \mu \mathrm{~m}$ ), $0.4 \times 30 \mathrm{~cm}$. Preparative HPLC was conducted on a Shimadzu LC-6A instrument with a Shimadzu UV-VIS detector, SPD6AV, using a column LiChrosorb Si-60 ( $5 \mu \mathrm{~m}$ ), $1.0 \times 30 \mathrm{~cm}$. Unless otherwise stated, solvent extracts were dried over anhydrous sodium sulfate and all operations were carried out under nitrogen or argon. The extract or the filtrate was concentrated under reduced pressure at $<30^{\circ} \mathrm{C}$ using a rotary evaporator

Synthesis of 6s-cis-Locked Bicyclic Retinal 5: ( $\pm$ )-2,3,4,5,6,7-Hexahydro-2-(1-hydroxy-3,3-dimethoxy-1-methylpropyl)-7,7-dimethylinden-1-one $\mathbf{1 0}$.-To a solution of LDA ( 18.0 mmol , prepared from $2.51 \mathrm{~cm}^{3}$ of diisopropylamine and 18.0 mmol of BuLi ) in tetrahydrofuran (THF) $\left(18 \mathrm{~cm}^{3}\right)$ was added a solution of the bicyclic ketone $9(2.95 \mathrm{~g}, 18 \mathrm{mmol})$ in THF $\left(29 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$. After the reaction mixture had been stirred for 1 h , 3-oxobutyraldehyde dimethyl acetal ( $4.75 \mathrm{~g}, 36.0 \mathrm{mmol}$ ) was added to it and stirring continued at $-40^{\circ} \mathrm{C}$ for 1 h . The
reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, after which the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give a residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $1: 2)$. This afforded a mixture of diastereoisomers $10(4.55 \mathrm{~g}$, $85 \%$ ) as a pale yellow oil, some of which was separated by CC ( $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 2$ ) to give the less polar compound 10a and the more polar compound 10b. Compound 10a: $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3475(\mathrm{OH}), 1685(\mathrm{C}=\mathrm{O})$ and $1630(\mathrm{C}=\mathrm{C})$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3520$ (intramolecular hydrogen bond); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05$ (3 $\mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), 1.16 and 1.18 (each 3 H , each s, gem-Me), 2.29 ( 2 H , $\mathrm{t}, \mathrm{J}, 4-\mathrm{H}_{2}$ ), $2.57\left(2 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}_{2}\right), 3.34$ and 3.37 (each 3 H , each s, $2 \times \mathrm{OMe}), 4.73(1 \mathrm{H}, \mathrm{dd}, J 6$ and $4,11-\mathrm{H})$ and $4.48(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ (Found: $\mathrm{M}^{+}-\mathrm{OMe}$, 265.180. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}$ requires M - OMe, 265.180). Compound 10b: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3475(\mathrm{OH}), 1685$ $(\mathrm{C}=\mathrm{O})$ and $1630(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07(3 \mathrm{H}, \mathrm{s}$, 9-Me), 1.15 and 1.17 (each 3 H , each s, gem-Me), $2.30(2 \mathrm{H}, \mathrm{t}, J 6$, $\left.4-\mathrm{H}_{2}\right), 2.51\left(2 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}_{2}\right), 3.35$ and 3.38 (each 3 H , each s, $2 \times \mathrm{OMe}), 4.36(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $4.74(1 \mathrm{H}, \mathrm{t}$-like, $J 5.5,11-\mathrm{H})$ (Found: $\mathrm{M}^{+}-\mathrm{OMe}, 265.180 . \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}$ requires $M-\mathrm{OMe}$, 265.180).
( $\pm$ )-2,3,4,5,6,7-Hexahydro-2-(2-formyl-1-hydroxy-1-methyl-ethyl)-7,7-dimethylinden-1-one 11.-To a solution of the acetal $10(1.0 \mathrm{~g}, 3.38 \mathrm{mmol})$ in acetone ( $25 \mathrm{~cm}^{3}$ ) was added $15 \% \mathrm{H}_{2^{-}}$ $\mathrm{SO}_{4}\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h and then poured into water. The water layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with brine, dried and evaporated to give a residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ benzene, 1:9) to afford the title compound $11(0.70 \mathrm{~g}, 83 \%)$ as a pale yellow oil. A portion of the oil was separated by preparative $\mathrm{TLC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-benzene, $1: 4$ ) to yield the less polar compound 11a and the more polar compound 11b. Compound 11a: $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1720(\mathrm{CHO}), 1685$ (cyclopentenone) and $1630(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14$ and 1.17 (each 3 H , each s, gem-Me), 1.22 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), 2.39 ( $1 \mathrm{H}, \mathrm{dd}, J 15$ and 3, $10-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{dd}, J 15$ and $2,10-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $9.95\left(1 \mathrm{H}\right.$, dd, $J 3$ and 2, CHO) (Found: $\mathrm{M}^{+}$, 250.158. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $M, 250.157$ ). Compound 11b: $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3450(\mathrm{OH}), 1720(\mathrm{CHO}), 1685$ (cyclopentenone) and $1630(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.17$ ( $6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.46(1 \mathrm{H}, \mathrm{dd}, J 15$ and $3,10-\mathrm{H})$, $2.58(1 \mathrm{H}$, dd, $J 15$ and $2.5,10-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $9.95(1 \mathrm{H}$, t -like, $J 3, \mathrm{CHO}$ ) (Found: $\mathrm{M}^{+}, 250.156 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $M$, 250.157).

Methyl(E,E/Z,E)-( $\pm$ )-7-(2,3,4,5,6,7-Hexahydro-7,7-dimethyl-1-oxo-1H-inden-2-yl)-7-hydroxy-3-methylocta-2,4-dienoate 12. $-\operatorname{BuLi}\left(15 \% \mathrm{w} / \mathrm{v} ; 3.8 \mathrm{~cm}^{3}, 8.9 \mathrm{mmol}\right)$ was added to a solution of diethyl 3-methoxycarbonyl-2-methylprop-2-enylphosphonate $(E: Z=3: 1)(2.20 \mathrm{~g}, 8.8 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After the reaction mixture had been stirred for 20 min at room temp., the aldehyde $11(697 \mathrm{mg}, 2.79 \mathrm{mmol})$ in THF ( $7 \mathrm{~cm}^{3}$ ) was added dropwise to it at $0^{\circ} \mathrm{C}$ and stirring continued for a further 30 min . The mixture was then poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated. The residue was purified by CC ( $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:9) to give the title compound 12 as a mixture of diastereoisomers (total $414 \mathrm{mg}, 68 \%$ ). An aliquot of this was separated by preparative TLC to afford the $13 Z$-isomers 12a (less polar) and 12b (more polar) and the $13 E$-isomers 12c (less polar) and 12d (more polar). Compound 12a: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3450(\mathrm{OH}), 1710\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1670$ (cyclopentenone) and 1625 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.17(6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.02(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.91(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 5.64(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.37$ ( 1 H , ddd, $J 16,8$ and $6.5,11-\mathrm{H}$ ) and $7.43(1 \mathrm{H}, \mathrm{d}, J 16,12-\mathrm{H})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 347.224$. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}$ requires $M+\mathrm{H}, 347.222$ ). Compound 12b:
$v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1710\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1670$ (cyclo pentenone) and $1625(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.16(9 \mathrm{H}, \mathrm{s}$, gem-Me and 9-Me), $2.00(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me})$, $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.76(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.62(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.30(1 \mathrm{H}$, ddd, $J 16,8.5$ and 6, $11-\mathrm{H}$ ) and $7.54(1 \mathrm{H}, \mathrm{d}, J 16,12-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 346.213$. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\left.M, 346.214\right)$. Compound 12c: $v_{\max }(\mathrm{CH}-$ $\left.\mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1710\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1670$ (cyclopentenone) and $1625(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.17$ ( $6 \mathrm{H}, \mathrm{s}$, gem-Me), 2.29 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 3.71 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$ ), $4.85(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.72(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.13(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H})$ and $6.36(1 \mathrm{H}$, ddd, $J 15,8$ and $6.5,11-\mathrm{H})$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 347.222. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}$ requires $M+\mathrm{H}, 347.222$ ). Compound 12d: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1710\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1670$ (cyclopentenone) and $1625(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.17(9 \mathrm{H}, \mathrm{s}$, gem-Me and 9-Me), $2.27(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.48(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.68(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{d}, J 15.5,12-\mathrm{H})$ and $6.27(1 \mathrm{H}$, ddd, $J 15.5,8$ and $6.5,11-\mathrm{H})$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 347.225. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}$ requires $M+\mathrm{H}, 347.222$ ).

A mixture of the aldehyde $11(2.74 \mathrm{~g}, 10.7 \mathrm{mmol})$, 3-methoxy-carbonyl-2-methylprop-2-enylidene)triphenylphosphorane ${ }^{15}$ $(4.80 \mathrm{~g}, 12.8 \mathrm{mmol})$ and dry benzene ( $138 \mathrm{~cm}^{3}$ ) was refluxed for 30 min . After cooling, evaporation of the solvent gave the residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford the ester $12(3.56 \mathrm{~g}, 96 \%)$ as an isomeric mixture.

Methyl(E,E,E/Z,E,E)-3-Methyl-7-(4,5,6,7-tetrahydro-4,4-di-methyl-1H-inden-2-yl)octa-2,4,6-trienoate 13a, Methyl ( $\mathrm{E}, \mathrm{E}, \mathrm{E} /$ Z,E,E)-3-Methyl-7-(4,5,6,7-tetrahydro-7,7-dimethyl-1H-inden-2-yl)octa-2,4,6-trienoate 13b.-To a solution of the ester 12 (300 $\mathrm{mg}, 0.87 \mathrm{mmol})$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(92 \mathrm{mg}, 4.18$ mmol ) and the mixture was stirred at room temp. for 2 h . The mixture was poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated to give an oil which was dissolved in light petroleum (b.p. $30-40^{\circ} \mathrm{C}$ ) $(5$ $\mathrm{cm}^{3}$ ). To this solution was added iodine ( $13.5 \mathrm{mg}, 0.053 \mathrm{mmol}$ ) and the mixture was refluxed for 30 min and then cooled and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, followed by brine, dried and evaporated to give a residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 9\right)$ to afford the title compounds $13(50 \mathrm{mg}, 20 \%$ ) as a mixture of geometrical isomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 398$ and 282 (Found: $\mathrm{M}^{+}$, 312.210. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $M, 312.209)$.
(E,E,E/Z,E,E)-3-Methyl-7-(4,5,6,7-tetrahydro-4,4/7,7-dimeth$y l-1 \mathrm{H}$-inden-2-yl)octa-2,4,6-trienal 14 and 5.-LAH $(25 \mathrm{mg}$, 0.66 mmol ) was added to a solution of the ester $13(102 \mathrm{mg}, 0.33$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(4 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 10 min . The reaction was quenched by EtOAc and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The diluted mixture was washed with brine, dried and evaporated to give the resulting hydroxy compound which was dissolved in acetone and shaken with active $\mathrm{MnO}_{2}(1.56 \mathrm{~g})$ at room temp. for 2 h . The mixture was filtered through Celite. Evaporation of the filtrate gave an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:4) to provide an isomeric mixture of the title compounds 14 and $5(48 \mathrm{mg}, 52 \%)$ as an orange oil. Separation of the mixture by preparative HPLC [LiChromosorb Si-60 ( $5 \mu \mathrm{~m}$ ), $\mathrm{Et}_{2} \mathrm{O}$-hexane, 8:92] gave the $13 Z$-isomers $\mathbf{1 4 b}, 5 \mathrm{~b}$ and the all- $E$-isomers 14a, 5 a , in a ratio ca. 1.0:1.4:1.2:1.7. 13Z-Isomer 14b: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 420(\varepsilon$ 20000 ) and $297(11000)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14(6 \mathrm{H}, \mathrm{s}$, gem-Me), 2.07 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), 2.15 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 3.18 ( $2 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, 18-\mathrm{H}_{2}\right), 5.83(1 \mathrm{H}, \mathrm{d}, J 8,14-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, J 11.5,10-\mathrm{H})$, $6.45(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,11-\mathrm{H}), 7.33(1 \mathrm{H}$, d, $J 15,12-\mathrm{H}$ ) and $10.22(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}$, 282.198. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ). 13Z-Isomer $\mathbf{5 b}$ : $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{O})$ and $1584(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $420(\varepsilon 19000)$ and $297(\varepsilon 13000) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12(6$

H, s, gem-Me), 2.09 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), 2.15 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 3.14 ( 2 $\left.\mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{2}\right), 5.82(1 \mathrm{H}, \mathrm{d}, J 8,14-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J 11.5,10-\mathrm{H})$, $6.63(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,11-\mathrm{H}), 7.30(1 \mathrm{H}$, $\mathrm{d}, J 15,12-\mathrm{H})$ and $10.21(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ 1.13 ( $6 \mathrm{H}, \mathrm{s}$, gem-Me), 1.65 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 1.89 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), $2.84\left(2 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{2}\right), 5.76(1 \mathrm{H}, \mathrm{d}, J 7.5,14-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{d}, J$ $11.5,10-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 6.84(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,11-$ $\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H})$ and $10.21(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 282.197 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ). All- $E-$ isomer 14a: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 425(\varepsilon 32000)$ and $295(\varepsilon 10000)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14(6 \mathrm{H}, \mathrm{s}$, gem-Me), $2.07(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me})$, $2.33(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 3.16\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H}_{2}\right), 5.97(1 \mathrm{H}, \mathrm{d}, J 8.5$, $14-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{d}, J 16,12-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J 11.5,10-\mathrm{H}), 6.45$ $(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{dd}, J 16$ and $11.5,11-\mathrm{H})$ and $10.10(1 \mathrm{H}$, d, $J 8.5, \mathrm{CHO}$ ) (Found: $\mathrm{M}^{+}, 282.196 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M$, 282.198). All- $E$-isomer 5 a m.p. $113-116^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1660(\mathrm{C}=\mathrm{O})$ and $1582(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 425(\varepsilon 29000)$ and $295(\varepsilon 11000)$; $\lambda_{\max }$ (hexane) $/ \mathrm{nm} 429(\varepsilon 36000), 406(\varepsilon 40000)$, 386sh ( $\varepsilon 29000$ ) and $292(\varepsilon 10000)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12$ ( $6 \mathrm{H}, \mathrm{s}$, gem-Me), 2.09 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), 2.33 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 3.12 $\left(2 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{2}\right), 5.98(1 \mathrm{H}, \mathrm{d}, J 8.5,14-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{d}, J 11.5$, $10-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{dd}$, $J 15$ and $11.5,11-\mathrm{H})$ and $10.10(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{CHO}) ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$ ) $1.13(6 \mathrm{H}, \mathrm{s}$, gem-Me), 1.79 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 1.89 ( 3 $\mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.83\left(2 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{2}\right), 6.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,14-\mathrm{H}), 6.12(1$ $\mathrm{H}, \mathrm{d}, J 15.5,12-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{d}, J 11.5,10-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$, $6.91(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and $11.5,11-\mathrm{H})$ and $10.07(1 \mathrm{H}, \mathrm{d}, J 8$, CHO ) (Found: $\mathrm{M}^{+}, 282.199 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ).

Photoisomerization of 5a.-All-E-bicyclic retinal 5 a ( 33 mg ) in $\mathrm{MeOH}\left(33 \mathrm{~cm}^{3}\right)$ was irradiated with a daylight fluorescent lamp ( 30 W , without filter) for 1 h at room temp. to give a mixture of geometrical isomers. Evaporation of MeOH and subsequent preparative HPLC [LiChrosorb Si-60 ( $5 \mu \mathrm{~m}$ ), THFhexane, 3:97] of the residue in the dark gave the $13 Z$-isomer $5 \mathbf{b}$, the $11 Z$-isomer 5 c , the $9 Z$-isomer 5 d and the all- $E$-isomer 5 a in a ratio of ca. 4:9:15:17. 11Z-Isomer $5 \mathrm{c}: v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1660$ $(\mathrm{C}=\mathrm{O})$ and $1581(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 422,299$ and 229; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 407(\varepsilon 14000), 295(\varepsilon 8000)$ and $229(\varepsilon 9000)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.11(6 \mathrm{H}, \mathrm{s}$, gem-Me), $1.85(6 \mathrm{H}, \mathrm{s}, 9$ and $13-$ $\mathrm{Me}), 2.84\left(2 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{2}\right), 5.61(1 \mathrm{H}, \mathrm{d}, J 12,12-\mathrm{H}), 6.22(1 \mathrm{H}, \mathrm{d}$, $J 8,14-\mathrm{H}), 6.47(1 \mathrm{H}, \mathrm{t}$-like, $J 12,11-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 6.77(1$ $\mathrm{H}, \mathrm{d}, J 12,10-\mathrm{H})$ and $10.07(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO})$ (Found: M ${ }^{+}$, 282.199. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M$, 282.198). 9Z-Isomer 5d: $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{O})$ and $1582(\mathrm{C}=\mathrm{C})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 416$ ( $\varepsilon 21000$ ) and $295(\varepsilon 14000)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.13(6 \mathrm{H}, \mathrm{s}$, gem-Me), 2.07 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), $2.30(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 3.17(2 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{2}\right), 5.97(1 \mathrm{H}, \mathrm{d}, J 8.5,14-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{d}, J 12,10-\mathrm{H}), 6.32$ $(1 \mathrm{H}, \mathrm{d}, J 16,12-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{dd}, J 16$ and 12 , $11-\mathrm{H})$ and $10.10(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{CHO}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.12$ ( $6 \mathrm{H}, \mathrm{s}$, gem-Me), 1.78 ( $3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$ ), 1.91 ( $3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ ), 2.83 ( $2 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{2}$ ), $5.90(1 \mathrm{H}, \mathrm{d}, J 12,10-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{d}, J 8$, $14-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{d}, J 15.5,12-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.21(1 \mathrm{H}$, dd, $J 15.5$ and $12,11-\mathrm{H}$ ) and 10.03 ( $1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO}$ ) (Found: $\mathrm{M}^{+}, 282.199 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ).

Synthesis of $6 s$-trans-Locked Bicyclic Retinal 6: 3-(1-Hydroxy-2,6-dimethylcyclohexyl)-1-(tetrahydro-2H-pyran-2-
yl)prop-2-yne 16.-To a stirred solution of the tetrahydropyranyl ether of prop-2-yn-1-ol ( $33 \mathrm{~g}, 240 \mathrm{mmol}$ ) in dry $\mathrm{Et}_{2} \mathrm{O}(150$ $\mathrm{cm}^{3}$ ) was added a solution of $\operatorname{BuLi}\left(10 \%\right.$ w/v; $152 \mathrm{~cm}^{3}, 240$ mmol ) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and a solution of 2,6-dimethylcyclohexanone ( $15 \mathrm{~g}, 120 \mathrm{mmol}$ ) in dry $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ was then added dropwise at $0^{\circ} \mathrm{C}$. After being stirred for 30 min at room temp., the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, washed with brine, dried and evaporated to give an oil which was distilled (b.p. 153-
$\left.156^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}\right)$ to afford the title compound $16(32 \mathrm{~g}, 100 \%)$ as a mixture of diastereoisomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610$ and $3450(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09(6 \mathrm{H}, \mathrm{d}, J 7,1-$ and $5-\mathrm{Me})$, 3.53 and 3.84 (each 1 H , each m, OCHOCH2), $4.31\left(2 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}_{2}\right)$ and $4.84(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO})$ (Found: $\mathrm{M}^{+}, 266.186 . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $M, 266.188)$.

3-(1-Hydroxy-2,6-dimethylcyclohexyl)prop-2-yn-1-ol 17.-A solution of the alcohol $16(21 \mathrm{~g}, 80 \mathrm{mmol})$ in acetone $\left(194 \mathrm{~cm}^{3}\right)$ was added to $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}\left(194 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temp. for 18 h and then neutralized with $\mathrm{NaHCO}_{3}$. After evaporation of the acetone, the residue was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, $1: 1$ ) to provide the title compound $17(15 \mathrm{~g}, 100 \%)$ as a mixture of diastereoisomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3612$ and 3422 $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09(6 \mathrm{H}, \mathrm{d}, J 7,1-$ and $5-\mathrm{Me})$ and $4.31\left(2 \mathrm{H}, \mathrm{d}, J 4,9-\mathrm{H}_{2}\right)$ (Found: $\mathrm{M}^{+}, 182.131 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M, 182.131$ ).

2,3,3a,4,5,6-Hexahydro-3a,7-dimethylinden-1-one 18.-A mixture of phosphorus pentoxide ( 4 g ) and methanesulfonic acid $\left(30 \mathrm{~cm}^{3}\right)$ was stirred at $80^{\circ} \mathrm{C}$ until a homogeneous solution was obtained. The solution was then cooled to $-15^{\circ} \mathrm{C}$ and the diol $17(5 \mathrm{~g}, 27 \mathrm{mmol})$ was added to it over 10 min . The cooling bath was then removed and stirring continued for 15 min . The solution was poured into ice-water and extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed sequentially with aqueous $\mathrm{NaHCO}_{3}$ and brine. The dried extracts were evaporated to give a dark brown oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford the ketone $18(1.97 \mathrm{~g}, 44 \%)$. Distillation (b.p. $72^{\circ} \mathrm{C} / 1$ mmHg ) gave a colourless oil which solidified to a crystalline mass in a refrigerator; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1697(\mathrm{C}=\mathrm{O})$ and 1631 $(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 253 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me})$ and $2.07(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.76$ $\left(\mathrm{CH}_{2}\right), 18.80(\mathrm{C}-17), 25.2(\mathrm{C}-18), 33.1,35.9,36.0$ and 36.5 $\left(\mathrm{CH}_{2} \times 4\right), 39.3(\mathrm{C}-1), 137.9(\mathrm{C}-6), 145.9(\mathrm{C}-5)$ and $208.1(\mathrm{C}=\mathrm{O})$ (Found: $\mathrm{M}^{+}, 164.121 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}$ requires $M, 164.120$ ).

Methyl 2,3,3a,4,5,6-Hexahydro-3a,7-dimethyl-1-oxo-1H-indene-2-carboxylate 19.-To a suspension of $\mathrm{NaH}(60 \%$ oil dispersion; $0.26 \mathrm{~g}, 18.3 \mathrm{mmol}$ ) in dry benzene ( $10 \mathrm{~cm}^{3}$ ) was added dimethyl carbonate $\left(1.03 \mathrm{~cm}^{3}, 12.2 \mathrm{mmol}\right)$. The mixture was heated to reflux, and a solution of the bicyclic ketone 18 $(1.0 \mathrm{~g}, 6.10 \mathrm{mmol})$ in dry benzene $\left(10 \mathrm{~cm}^{3}\right)$ was then added to it. The reaction mixture was refluxed for 20 h and after cooling to room temp., was treated with glacial acetic acid. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined extracts were washed with brine, dried and evaporated to give an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:3) to afford the keto ester $19(1.25 \mathrm{~g}, 92 \%)$ as a colourless oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1738$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1698(\mathrm{C}=\mathrm{O})$ and $1633(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 301$ and $255 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 2.08(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}$ ), $3.47(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$ and $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ (Found: $\mathrm{M}^{+}, 222.125 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $M, 222.125$ ).

Methyl 1-tert-Butyldimethylsilyloxy-2,3,3a,4,5,6-hexahydro-3a,7-dimethyl-1H-indene-2-carboxylate 20.-To a stirred solution of the keto ester $19(0.95 \mathrm{~g}, 4.28 \mathrm{mmol})$ in $\mathrm{MeOH}(12$ $\left.\mathrm{cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(163 \mathrm{mg}, 4.28 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then at room temp. for 20 min . The reaction mixture was then twice extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with brine, dried and evaporated to give an oil which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(13 \mathrm{~cm}^{3}\right)$. To this solution were added $\mathrm{Et}_{3} \mathrm{~N}\left(1.46 \mathrm{~cm}^{3}\right.$, 5.14 mmol ), 4-dimethylaminopyridine ( $1.88 \mathrm{~g}, 8.56 \mathrm{mmol}$ ) and tert-butyldimethylsilyl chloride ( $2.63 \mathrm{~g}, 8.56 \mathrm{mmol}$ ). The mixture was stirred at room temp. overnight and then quenched
with water and extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with $5 \% \mathrm{HCl}$, aqueous $\mathrm{NaHCO}_{3}$ and brine, dried and evaporated to give an oil. This was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:9) to provide the title compound $20(0.84$ $\mathrm{g}, 55 \%)$ as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1727\left(\mathrm{CO}_{2} \mathrm{Me}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05$ and 0.09 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$ ), $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 1.12(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.64(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.96$ $(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $4.97(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 338.226 . \mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}$ Si requires $M, 338.227$ ).

1-tert-Butyldimethylsilyloxy-2,3,3a,4,5,6-hexahydro-3a,7-di-methyl-1H-indene-2-carbaldehyde 21.-To a stirred suspension of LAH ( $68 \mathrm{mg}, 1.78 \mathrm{mmol}$ ) in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of the ester $20(300 \mathrm{mg}, 0.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min after which the excess of LAH was destroyed by the addition of moist $\mathrm{Et}_{2} \mathrm{O}$ and water. The reaction mixture was then twice extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined extracts were washed with brine, dried and evaporated to give the crude alcohol ( 280 mg ). This was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ and the solution was treated with the Swern oxidation reagent prepared from dimethyl sulfoxide ( $0.22 \mathrm{~cm}^{3}, 2.70 \mathrm{mmol}$ ) and oxalyl chloride $\left(0.11 \mathrm{~cm}^{3}\right.$, 1.35 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$. Stirring was continued at $-60^{\circ} \mathrm{C}$ for 15 min after which $\mathrm{Et}_{3} \mathrm{~N}$ was added to the mixture. After continued stirring at $-60^{\circ} \mathrm{C}$ for 15 min and at room temp. for 5 min , saturated aqueous citric acid was added to the reaction mixture and the whole solution was twice extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated to give an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$ hexane, $1: 19$ ) to provide the aldehyde $21(210 \mathrm{mg}, 77 \%)$ as a colourless oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{CHO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.07$ and 0.10 (each 3 H , each s, $\mathrm{Me}_{2} \mathrm{Si}$ ), $0.87(9 \mathrm{H}$, s, $\left.\mathrm{Me}_{3} \mathrm{C}\right), 1.17(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.66(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.99(1 \mathrm{H}, \mathrm{m}, 8-$ $\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H})$ and $9.73(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{CHO})$.

1-(1-tert-Butyldimethylsilyloxy-2,3,3a,4,5,6-hexahydro-3a,7-dimethyl-1H-inden-2-yl)ethanone 22.-To a solution of the aldehyde $21(879 \mathrm{mg}, 2.85 \mathrm{mmol})$ in dry THF ( $22 \mathrm{~cm}^{3}$ ) was added a solution of $\mathrm{MeMgBr}\left(2.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 3.0 \mathrm{~cm}^{3}, 7.13 \mathrm{mmol}\right)$ in THF at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and twice extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give a crude alcohol ( 924 mg ). Swern oxidation as above, using the following quantities, dimethyl sulfoxide $\left(0.66 \mathrm{~cm}^{3}, 9.0 \mathrm{mmol}\right)$, oxalyl chloride $\left(0.36 \mathrm{~cm}^{3}, 4.5 \mathrm{mmol}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(9 \mathrm{~cm}^{3}\right)$ and alcohol ( 924 mg ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$ and then $\mathrm{Et}_{3} \mathrm{~N}(3.3$ $\mathrm{cm}^{3}$ ) afforded a crude oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, $1: 19$ ) to afford $22(783 \mathrm{mg}, 85 \%)$ as a colourless oil; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01$ and 0.09 (each 3 H , each $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right), 1.16(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}), 1.65(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.17(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 3.11(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$ and $5.04(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H})$.

1-(3a,4,5,6-Tetrahydro-3a,7-dimethyl-3H-inden-2-yl)ethanone 23.-To a stirred solution of the ketone $22(140 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry THF was added a solution of TBAF ( $1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.88$ $\mathrm{cm}^{3}, 1.88 \mathrm{mmol}$ ) in THF at $0^{\circ} \mathrm{C}$. After being stirred at room temp. for 1 h , the reaction mixture was quenched by the addition of water and then twice extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 17\right)$ to afford the dienone 23 ( $68 \mathrm{mg}, 83 \%$ ) as a pale yellow oil; $v_{\text {max }}-$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{O})$ and $1568(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $312 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.03(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.79(3 \mathrm{H}, \mathrm{s}, 5-$ Me), $2.36(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.37\left(2 \mathrm{H}, \mathrm{s}, 16-\mathrm{H}_{2}\right)$ and $7.16(1$ $\mathrm{H}, \mathrm{s}, 7-\mathrm{H}$ ) (Found: $\mathrm{M}^{+}$, 190.137. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$ requires $M$, 190.136).
(E)-Ethyl 3-(3a,4,5,6-Tetrahydro-3a,7-dimethyl-3H-inden-2$y l$ )but-2-enoate 24.-To a stirred solution of diethyl ethoxycarbonylmethylphosphonate ( $1.36 \mathrm{~g}, 6.10 \mathrm{mmol}$ ) in dry THF ( 5 $\mathrm{cm}^{3}$ ) was added a solution of $\mathrm{BuLi}\left(1.58 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3.85 \mathrm{~cm}^{3}\right.$, 6.08 mmol ) at $0^{\circ} \mathrm{C}$. After this mixture had been stirred at room temp. for 30 min , a solution of the dienone $23(231 \mathrm{mg}, 1.22$ mmol) in dry THF ( $5 \mathrm{~cm}^{3}$ ) was added to it at $0^{\circ} \mathrm{C}$ and the mixture was refluxed for 3 h . After cooling, the reaction mixture was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and twice extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 19\right)$ to provide the ester $24(198$ $\mathrm{mg}, 63 \%)$ as a pale yellow oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1703\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and $1603(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 331$ and $266 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.74$ ( $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ ), $2.40(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 4.18(2 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $5.75(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $6.75(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 260.176 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $M, 260.177$ ).

Methyl 3-Methyl-7-(3a,4,5,6-tetrahydro-3a,7-dimethyl-3H-inden-2-yl)octa-2,4,6-trienoate 26.-A solution of the ester 24 $(332 \mathrm{mg}, 1.28 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred suspension of LAH ( $97 \mathrm{mg}, 2.56 \mathrm{mmol}$ ) in dry $\mathrm{Et}_{2} \mathrm{O}$ ( 5 $\mathrm{cm}^{3}$ ) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min after which the excess of LAH was destroyed by the addition of moist $\mathrm{Et}_{2} \mathrm{O}$ and water and the whole twice extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated to give an oil which was dissolved in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$. This was added to a solution of $\mathrm{Ph}_{3} \mathrm{P} \cdot \mathrm{HBr}(442 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 20 h . Evaporation of the MeOH gave a residue which was washed with $\mathrm{Et}_{2} \mathrm{O}$ to provide a Wittig salt. To this salt and $(E)$-methyl 3-formylbut-2enoate ( $164 \mathrm{mg}, 1.28 \mathrm{mmol}$ ) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{NaOMe}(90 \mathrm{mg}, 1.66 \mathrm{mmol})$ in MeOH $\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then poured into water and twice extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give a yellow oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$ hexane, $1: 9)$ to yield the ester $26(168 \mathrm{mg}, 42 \%)$ as a mixture of geometrical isomers; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1697\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and 1588 $(\mathrm{C}=\mathrm{C})$ (Found: $\mathrm{M}^{+}, 312.207 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $M, 312.209$ ).
(Z,E,E/E,Z,E/E,E,E)-3-Methyl-7-(3a,4,5,6-tetrahydro-3a,7-di-methyl-3H-inden-2-yl)octa-2,4,6-trienal 6.-A solution of the ester $26(168 \mathrm{mg}, 0.54 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of LAH $(41 \mathrm{mg}, 1.08 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. After the mixture had been stirred at $0^{\circ} \mathrm{C}$ for 10 min , the excess of LAH was destroyed by the addition of moist $\mathrm{Et}_{2} \mathrm{O}$ and water and the whole twice extracted by $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried and evaporated to give the hydroxy compound as a pale yellow amorphous product. A mixture of the resulting hydroxy compound and active $\mathrm{MnO}_{2}$ $(1.6 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was shaken at room temp. for 3 h and then filtered through Celite. Evaporation of the filtrate gave an oil which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 9\right)$ to yield an isomeric mixture of the aldehydes $6(58 \mathrm{mg}, 38 \%$ ) as an orange oil. Separation of the isomers by preparative HPLC [LiChrosorb Si-60 $(5 \mu \mathrm{~m}) 1 \times 30 \mathrm{~cm}$, THF-hexane, 3:97, 1.5-3.0 $\left.\mathrm{cm}^{3} \mathrm{~min}^{-1}, 350 \mathrm{~nm}\right]$ gave $13 Z, 11 Z$ and all- $E$-isomer in a pure state, respectively, in a ratio of 1.4:1:4. 13Z-Isomer $\mathbf{6 b}$ : $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1664,1660(\mathrm{CHO})$ and $1593(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }{ }^{-}$ (EtOH)/nm 407 and $280 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}), 1.75(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 5.84(1 \mathrm{H}, \mathrm{d}, J 8,14-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{d}, J 12,10-\mathrm{H}), 6.56$ $(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{dd}, J 15$ and $12,11-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{d}, J 15$, $12-\mathrm{H}$ ) and 10.22 ( $1 \mathrm{H}, \mathrm{d}, J$ 8, CHO) (Found: $\mathrm{M}^{+}, 282.197$. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ). 11Z-Isomer $6 \mathrm{c}: v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1663,1660(\mathrm{CHO})$ and $1592(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \mathrm{405}, 310$,

258 and $227 \mathrm{sh} ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 405 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.05(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.74(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.06(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.39(3$ $\mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 5.95(1 \mathrm{H}, \mathrm{d}, J 10,12-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{d}, J 8,14-\mathrm{H})$, $6.55(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{d}, J 10,10-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{t}$-like, $J 10$, $11-\mathrm{H})$ and $10.10(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 282.197 . \mathrm{C}_{20^{-}}$ $\mathrm{H}_{26} \mathrm{O}$ requires $\left.M, 282.198\right)$. All- $E$-isomer $6 \mathrm{a}: v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1663, $1660(\mathrm{CHO})$ and $1593(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \mathrm{413;}$ $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} \mathrm{410} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me})$, $1.74(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.10(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 5.98$ $(1 \mathrm{H}, \mathrm{d}, J 8.5,14-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{d}, J 12,10-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{d}, J 15$, $12-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.15(1 \mathrm{H}$, dd, $J 15$ and $12,11-\mathrm{H})$ and 10.12 ( $1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{CHO}$ ) (Found: $\mathrm{M}^{+}, 282.199 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ).

Photoisomerization of $\mathbf{6 a}$.-All-E-bicyclic retinal $\mathbf{6 a}(8 \mathrm{mg})$ in $\mathrm{MeOH}\left(8 \mathrm{~cm}^{3}\right)$ was irradiated with a daylight fluorescent lamp ( 30 W , without filter) at room temp. for 2 h to give a geometrical mixture. The MeOH was then evaporated and the residue was separated by preparative HPLC [LiChrosorb Si-60 (5 $\mu \mathrm{m})$, THF-hexane, $3: 97$ ] in the dark to afford the $13 Z$-isomer $\mathbf{6 b}$, $11 Z$-isomer 6c, $9 Z$-isomer $\mathbf{6 d}$ and all- $E$-isomer 6a. 9Z-Isomer 6d: $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1663,1660(\mathrm{CHO})$ and $1593(\mathrm{C}=\mathrm{C})$; $\lambda_{\text {max }}{ }^{-}$ $(\mathrm{EtOH}) / \mathrm{nm} 402,301 \mathrm{sh}, 257$ and 222; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 401$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.73(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.03(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.28(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 5.98(1 \mathrm{H}, \mathrm{d}, J 8,14-\mathrm{H})$, $6.14(1 \mathrm{H}, \mathrm{d}, J 11.5,10-\mathrm{H}), 6.28(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.46(1 \mathrm{H}, \mathrm{s}$, $7-\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,11-\mathrm{H})$ and $10.10(1 \mathrm{H}, \mathrm{d}, J 8$, CHO ) (Found: $\mathrm{M}^{+}, 282.199 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}$ requires $M, 282.198$ ).

## Acknowledgements

We wish to thank Emeritus Professor K. Tsukida and Mrs. Y.

Takafuji for helpful discussions and Miss M. Kawabata for technical assistance.

## References

1 Part 14, M. Ito, Y. Katsuta, Y. Yamano and K. Tsukida, J, Chem. Soc., Perkin Trans. 1, 1993, 987.
2 M. Ottolenghi, Adv. Photochem., 1980, 12, 97.
3 R. R. Birge, Annu. Rev. Biophys. Bioeng., 1981, 10, 315.
4 T. G. Ebrey and T. Yoshizawa, Exp. Eye Res., 1973, 17, 545.
5 S. Horiuchi, F. Tokunaga and T. Yoshizawa, Biochim. Biophys. Acta, 1980, 591, 445.
6 T. Yoshizawa and Y. Shichida, Methods Enzymol., 1982, 81, 634.

7 M. Ito, A. Kodama, K. Tsukida, Y. Fukada, Y. Shichida and T. Yoshizawa, Chem. Pharm. Bull., 1982, 30, 1913.
8 Y. Fukada, Y. Shichida, T. Yoshizawa, M. Ito, A. Kodama and K. Tsukida, Biochemistry, 1984, 23, 5826.
9 M. Ito, A. Kodama, T. Hiroshima and K. Tsukida, J. Chem. Soc., Perkin Trans. 1, 1986, 905.
10 M. Ito, Y. Katsuta, Y. Imamoto, Y. Shichida and T. Yoshizawa, Photochem. Photobiol., 1992, 56, 915.
11 M. Ito, Y. Mantani, K. Tsukida, Y. Shichida, S. Ioshida, Y. Fukada and T. Yoshizawa, J. Nutr. Sci., Vitaminol, 1988, 34, 641.
12 G. A. MacAlpine, R. A. Raphael, A. Shaw, A. W. Taylor and H.-J. Wild, J. Chem. Soc., Perkin Trans. I, 1976, 410.
13 M. Ito, T. Hiroshima, K. Tsukida, Y. Shichida and T. Yoshizawa, J. Chem. Soc., Chem. Commun., 1985, 1443.

14 R. S. H. Liu and A. Asato, Tetrahedron, 1984, 40, 1931.
15 R. N. Gedye, K. C. Westaway, P. Arora, R. Bisson and A. K. Khalil, Can. J. Chem., 1977, 55, 1218.

